00000EE100121804

Pages: 2

Reg No.:	Name:
----------	-------

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech S1,S2 (S) Examination September 2020 (2015 Scheme)

Course Code: EE100

Course Name: BASICS OF ELECTRICAL ENGINEERING Max. Marks: 100 **Duration: 3 Hours PART A** Marks Answer all questions, each carries 4 marks. 1 Draw and explain the V-I characteristics of ideal and actual current sources. (4) 2 Differentiate between statically induced emf and dynamically induced emf. (4) 3 What are the advantages of three phase system over single phase system? (4) 4 Define Active power, Reactive power and Apparent Power? Also draw the (4) power triangle. 5 List the advantages and disadvantages of the thermal power plant. (4) 6 Describe the working of solar photovoltaic energy conversion system. (4) 7 Derive the emf equation of single phase transformer. (4) 8 Explain the working principle of DC generator. (4) 9 How do you make Single-Phase Induction Motor Self-Starting? (4) 10 Compare squirrel cage induction motor with slip ring induction motor. (4) PART B

MODULE (1-4)

Answer any four questions, each carries 10 marks.

11 Find current I_1 in figure by using Y - Δ transformation. (10)

12 An iron ring is made up of two different materials A and B and also has an air (10)gap of 2mm. The relative permeability of A is 1000 and B is 1500 while their lengths are 75cm and 25 cm respectively. The cross sectional area of the core is 10cm². The magnetizing coil has 1000 turns and a current of 10A is allowed to flow through it. Calculate the i) the reluctance of part A, B and air gap ii) the flux in the air gap iii) mmf corresponding to each of the 3 parts.

00000EE100121804

13	a)	When a voltage of v=250 sin (314t+ π /3) is applied to a series RL circuit. The	(6)
		current drawn is i=25 sin (314t+ π /6). Determine (i) power factor (ii) Active	
b)		Power (iii) Impedance (iv) values of R and L	
	b)	A three phase star connected load consists of three identical inductive coils of	(4)
		resistance 50Ω and inductance 0.3H. The supply voltage is 415V, 50 Hz.	
		Calculate (i) phase current (ii) line current (iii) power factor (iv)total power	
		consumed	
14	a)	Derive the RMS and average values of a purely sinusoidal voltage waveform	(6)
	b)	Two wattmeters W1 and W2 are connected to measure the total power in a three	
		phase balanced circuit. One wattmeter reads 3600W while the second reads	(4)
		backwards. On reversing the connections of the second wattmeter it is found to	
		read 400W. Determine the total power and power factor	
15		Draw a neat schematic diagram of a hydro-electric power plant and explain the	(10)
		functions of various components.	
16		Draw a neat schematic diagram of a Nuclear power plant and explain its	(10)
		operation.	
		MODULE 5	
17	a)	Answer any one full question, each carries 10 marks. Explain the construction of single phase transformer.	(5)
	b)	Explain the working of single phase transformer.	(5)
18	a)	Draw the connection diagram of armature and field windings in shunt, series,	(7)
		and compound type DC motors. Write down the equation for field currents in	
		terms of line and armature currents.	
	b)	A dc motor connected to 240V supply has an armature resistance of 0.15ohm.	(3)
		Calculate the armature current when back emf is 213V	
		MODULE 6	
19	a)	Answer any one full question, each carries 10 marks. Describe the principle of operation of Split-Phase Induction Motor?	(8)
	b)	Why split-phase induction motors are most popular single- phase motors in the	(2)
		market?	
20	a)	A 3- ϕ 4 pole induction motor is supplied from 3 ϕ 50Hz ac supply. Find (i) synchronous speed	(8)
		(ii) rotor speed when slip is 4%(iii) the rotor frequency when runs at 600r.p.m.	
	b)	Classify induction motor according to its rotor construction	
	ĺ		(2)

